New Synthesis of α-Methylenecyclobutanones and α-Methylenazetidin-2-one Derivatives

By TORU MINAMI,*MASARU ISHIDA, and TOSHIO AGAWA

(Department of Petroleum Chemistry, Faculty of Engineering, Osaka University, Yamadakami, Suita, Osaka 565, Japan)

Summary Methyl(phenylthio)keten reacts with olefins and imines to yield α -(phenylthio)cyclobutanone and α -(phenylthio)azetidin-2-one derivatives which can be converted into α -methylenecyclobutanone and α -methylenazetidin-2-one derivatives, respectively. In connection with synthesis of natural products, many methods for introduction of $\alpha\beta$ -unsaturated carbonyl units have been developed.¹ We report here a versatile synthesis of α -methylenecyclobutanone and α -methylenazetidin-2-one derivatives from methyl(phenylthio)keten, which serves as the precursor of the $\alpha\beta$ -unsaturated carbonyl unit.[†]

[†] All compounds described herein provided the expected elemental analysis and spectral data.

TABLE 1. Synthesis of α -(phenylthio)cyclobutanones (2) from (1) and olefins

Olefin	Molar ratio olefin : (1)	Product % Yield	M.p. (b.p.)/°C
Cyclopentadiene	5:1	(2 a) 82	52.5 - 54
Indene	10:1	(2b) 42	100
Ethyl vinyl ether	13:1	(2c) 26	(92 at 1 mmHg)
2,3-Dihydropyran	5:1	(2d) 65	` 85—85∙5 ຶ

Methyl(phenylthio)keten (1) was generated *in situ* by dehydrochlorination of α -(phenylthio)propanoyl chloride[‡] with triethylamine. In the presence of excess of olefins, the keten (1) gave the α -(phenylthio)cyclobutanones (2) in good yields (Table 1). Regardless of the olefin substituents, all the cyclobutanones formed contain the phenylthio-group in the *endo*-configuration. These results suggest a concerted [2 + 2] cycloaddition mechanism.

Oxidation of (2a) with *m*-chloroperbenzoic acid (MCPBA) in chloroform at -10 °C afforded the sulphoxide (3a)(m.p. 94.5—96 °C, 94%). Thermolysis of (3a) at 150 °C in

TABLE 2. Synthesis of α -(phenylthio)azetidin-2-ones (5) from (1) and imines

Imine	Product	Product ratio a	M.p./°C
R–N=CHPh	% Yield	cis:trans	
R = Ph	(5a) 58	$\begin{array}{c} 100:0\\ 40:60 \end{array}$	193—194
R = Bu	(5b) 69		108—110 ^ь

^a Determined by n.m.r. spectroscopy. ^b M.p. of mixture; the *trans*-isomer only could be isolated pure, m.p. 118—120 °C.

In contrast to reactions with olefins, reactions of the keten (1) with imines were substituent dependent. The reaction between (1) and N-benzylidenaniline produced the $cis-\alpha$ -(phenylthio)azetidin-2-one (5a) as a single isomer, whereas the reaction of N-benzylidene-t-butylamine led to a mixture of cis- and $trans-\alpha$ -(phenylthio)azetidin-2-ones (5b) (Table 2). Oxidation of (5a) afforded the sulphoxide (6a) (m.p. 202—203 °C, 94%). The α -methylenazetidin-2-one (7a) was obtained by thermolysis of (6a) at 200 °C in vacuo [(7a), m.p. 146—147 °C, 77%; δ (CDCl₃) 5·09 (1H, s, H_a) and 5·76 (1H, s, H_b)].

In conclusion, the keten (1) can be regarded as a synthon equivalent of methyleneketen.

(Received, 3rd October 1977; Com. 1032.)

 α -(Phenylthio)propanoyl chloride was synthesized by treatment with thionyl chloride of α -(phenylthio)propanoic acid, which was obtained by the reaction of sodium benzene thiolate with ethyl α -chloropropionate following by hydrolysis; 85% overall yield; b.p. 87–93 °C at 1 mmHg.

¹ See, e.g., P. A. Grieco and J. J. Reap, *Tetrahedron Letters*, 1974, 1097; T. Minami, I. Niki, and T. Agawa, J. Org. Chem., 1974, **39**, **32**36; B. M. Trost, T. N. Salzmann, and K. Hiroi, J. Amer. Chem. Soc., 1976, **98**, 4887.